[1]楊澤棟,朱崇銘,伍小剛,等.一種低存儲迭代伽遼金間接邊界元方法與其在有界波發生器設計中的應用[J].高壓電器,2019,55(07):33-38.[doi:10.13296/j.1001-1609.hva.2019.07.006]
 YANG Zedong,ZHU Chongming,WU Xiaogang,et al.Low-storage Iterative Galerkin Indirect Boundary Element Method and Its Application in the Design of Bounded Wave Simulator Generator[J].High Voltage Apparatus,2019,55(07):33-38.[doi:10.13296/j.1001-1609.hva.2019.07.006]
點擊復制

一種低存儲迭代伽遼金間接邊界元方法與其在有界波發生器設計中的應用()
分享到:

《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期數:
2019年07期
頁碼:
33-38
欄目:
研究與分析
出版日期:
2019-07-15

文章信息/Info

Title:
Low-storage Iterative Galerkin Indirect Boundary Element Method and Its Application in the Design of Bounded Wave Simulator Generator
作者:
楊澤棟1 朱崇銘23 伍小剛23 鄒 軍1
(1. 清華大學電機系電力系統及發電設備控制和仿真國家重點實驗室, 北京 100084; 2. 南瑞集團公司智能電網保護和 運行控制國家重點實驗室, 南京 211106; 3. 南瑞集團有限公司, 南京 211106)
Author(s):
YANG Zedong1 ZHU Chongming23 WU Xiaogang23 ZOU Jun1
(1. State Key Lab of Control and Simulation of Power Systems and Generation Equipments,Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; 2. State key Laboratory of Smart Grid Protection and Control, NARI Group Corporation, Nanjing 211106, China; 3. NARI Group Corporation, Nanjing 211106, China)
關鍵詞:
間接邊界元 低存儲 有界波發生器
Keywords:
indirect boundary element low memory requirement bounded wave generator
DOI:
10.13296/j.1001-1609.hva.2019.07.006
摘要:
為了克服間接邊界元方法的存儲要求高、求解速度慢的問題,提出了一種低存儲要求迭代求解的間接邊界元求解方法。采用Galerkin方法獲得間接邊界元方程組的系數,根據物理耦合程度的差異,構造方程組的求解格式。對于空間距離較遠的單元,在迭代中直接計算耦合系數。由于不存儲這些單元對應的系數,可將方程組的存儲從O(N2)降低至O(N)。該方法應用于有界波模擬發生器的電容計算中,數值算例表明:該方法可有效提高設計效率和阻抗匹配的準確性。從理論上講,該方法實質上是一種基于物理耦合的預條件技術的應用,因此,其可推廣應用到電磁場數值計算涉及滿陣求解的場合。
Abstract:
In order to overcome the problem of high storage requirement and slow convergence rate of indirect boundary element method, a new indirect boundary element method with a low storage requirement is proposed. The coefficients of the indirect boundary element equations are obtained by the Galerkin approach, and the iterative procedure of the equations is constructed according to the difference of the degree of physical coupling. For the coefficients corresponding to elements with distant spatial distances, they are directly calculated in the iteration. Since these coefficients are not stored, the storage of the system of equations can be reduced from O(N2) to O(N). The method is applied to the capacitance calculation of the bounded wave simulation generator. Numerical examples show that the proposed method can effectively improve the design efficiency and accuracy of impedance matching. In theory, the method in this paper is essentially an application of pre-conditional technology based on physical coupling, so it can be generalized to the case where the numerical calculation of electromagnetic field involves full-scale solution.

參考文獻/References:

[1] 劉 玉,魯海亮,劉文博,等. 500 kV GIS變電站快速暫態過電壓研究[J]. 電瓷避雷器,2017(2):53-58. LIU Yu, LU Hailiang, LIU Wenbo, et al. The research of very fast transient overvoltage in 500 kV GIS substation[J]. Insulators and Surge Arresters, 2017(2):53-58.
[2] 陳維江,顏湘蓮,王紹武,等. 氣體絕緣開關設備中特快速瞬態過電壓研究的新進展[J]. 中國電機工程學報,2011,31(31):1-11. CHEN Weijiang, YAN Xianglian, WANG Shaowu, et al. Recent progress in investigation on very fast transient overvoltage in gas insulated switchgear[J]. Proceeding of the CSEE,2011,31(31):1-11.
[3] 谷定燮,修木洪,戴 敏,等. 1 000 kV GIS變電所VFTO特性研究[J]. 高電壓技術, 2007, 33(11):27-32. GU Dingxie, XIU Muhong, DAI Min, et al. Study on VFTO of 1 000 kV GIS substation[J]. High Voltage Engineering, 2007,33(11):27-32.
[4] 王 磊. 750 kV變電站GIS設備VFTO特性研究[J]. 中國電力, 48(5):125 -132. WANG Lei. Study on VFTO characteristics of GIS in 750 kV substation[J]. Electric Power,2015,48(5):125 -132.
[5] 劉亞培,林生軍,高文勝,等. 800 kV GIS變電站VFTO計算研究[J]. 高壓電器,2017,53(9):143-154. LIU Yapei, LIN Shengjun, GAO Wensheng, et al. Calculation of very fast transient overvoltage for 800 kV GIS Substation[J]. High Voltage Apparatus,2017,53(9): 143-148.
[6] 陳慶國,邱毓昌,張喬根,等. GIS中快速暫態過電壓的實驗室模擬[J]. 高電壓技術,2000,26(1):1-2. CHEN Qingguo, QIU Yuchang, ZHANG Qiaogen, et al. Laboratory simulation of very fast transient overvoltage in GIS[J]. High Voltage Engineering, 2000, 26(1): 1-2.
[7] AHMED S,RAJU D,CHATURVEDI S, et al. Modal analysis for a bounded-wave EMP simulator-part I: Effect of test object[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(1):171-182.
[8] 焦其祥,顧畹儀. 電磁場與電磁波[M]. 2版. 北京:科學出版社,2010:258-261. JIAO Qixiang, GU Wanyi. Field and wave electromagnetics[M]. 2rd ed. Beijing: Science Press, 2010: 258-261.
[9] 大衛 K. 電磁場與電磁波[M]. 何亞軍,桂良啟,譯. 北京:科學出版社,2010:291-295. DAVID K. Field and wave electromagnetics[M]. HE Yajun, GUI Liangqi, translate. Beijing: Tsinghua University Press, 2010: 291-295.
[10] 杜雷鳴,謝彥召,王紹飛. 平行板傳輸線特性阻抗仿真計算及解析修正[J]. 強激光與粒子束,2015,27(8):160-164. DU Leiming, XIE Yanzhao, WANG Shaofei. Simulation computation and analytic modification of characteristic impedance of parallel-plate transmission line[J]. High Power Laser and Particle Beams,2015, 27(8): 160-164.
[11] 胡玉生,李保江. GTEM傳輸室特性阻抗的三維有限元分析[J]. 計測技術,2006(2):4-5. HU Yusheng, LI Baojiang. Analysis of the characteristic impedance of GTEM cell by three dimension finite-element method[J]. Measurement Technology,2006(2):4-5.
[12] 劉 彬,李 剛. 有限元軟件Ansys在傳輸線特性阻抗計算中的應用[J]. 現代電子技術,2005,4(5):93-95. LIU Bin, LI Gang. Application of finite element software Ansys to calculate characteristic impedance of transmission line[J]. Modern Electronics Technique, 2005,4(5):93-95.
[13] 胡玉生,蔣全興,張本軍. EUT對TEM傳輸室特性阻抗影響的邊界元分析[J]. 東南大學學報(自然科學版),2003,2(2):145-147. HU Yusheng, JIANG Quanxing, ZHANG Benjun. Analysis of the characteristic impedance variation of TEM cell caused by equipment under test by BEM[J]. Journal of Southeast University(Science and Technology), 2003, 2(2): 145-147.
[14] 張淮清,王亞偉,付志紅. 虛邊界元法在電磁場計算中的應用[J]. 電工技術學報,2013,28(2):86-90. ZHANG Weiqing, WANG Yawei,FU Zhihong. Virtual boundary element method in computational electromagnetics[J]. Transactions of China Electrotechnical Society,2013, 28(2): 86-90.
[15] 劉士利,王澤忠,孫 靜. 基于線-面模型的邊界元法計算特高壓交流變電站設備附近工頻電場[J]. 電工技術學報,2011,26(3):162-167. LIU Shili, WANG Zezhong, SUN Jing. Calculation of power frequency electric field near equipments in UHV substations with BEM based on line-area models[J]. Transactions of China Electrotechnical Society,2011, 26(3): 162-167.
[16] 張淮清,聶 鑫,王亞偉,等. 徑向基函數—虛邊界法在電磁計算中的應用[J]. 電工技術學報,2014,29(4):79-84. ZHANG Weiqing, NIE Xin, WANG Yawei, et al. Application of radial basis function-virtual boundary method in electromagnetic computation[J]. Transactions of China Electrotechnical Society,2014, 29(4): 79-84.
[17] 吳萬春,文舸一,劉學觀. 用復變量邊界元法求解任意截面TEM傳輸線的特性阻抗[J]. 電子學報,1988,2(2):70-77. WU Wanchun, WEN Keyi, LIU Xueguan. Using complex variable boundary element method to solve the characteristic impedance of TEM transmission line with any section[J]. Journal of Electronics, 1998, 2(2): 70-77.
[18] 盛劍霓. 工程電磁場數值分析[M]. 1版. 西安:西安交通大學出版社,1991:276-280. SHENG Jianni. Numerical analysis of engineering electromagnetic[M]. 1rd edition. Xi’an: Xi’an Jiaotong University Press, 1991: 276-280.
[19] 劉士利,王澤忠,孫 靜. HVDC換流系統屏蔽罩寄生電容提取[J]. 電工技術學報,2011,26(2):201-206. LIU Shili, WANG Zezhong, SUN Jing. Extraction of parasitic capacitance of shield in HVDC converter stations[J]. Transactions of China Electrotechnical Society,2011,26(2): 201-206.
[20] 李亞莎. 高精度快速邊界元法及其在絕緣子電場計算中應用研究[D]. 北京:華北電力大學,2007:19-33. LI Yasha. Research on high precision fast bem and its application in insulator electric field calculation[M]. Beijing: North China Electric Power University, 2007: 19-33.

備注/Memo

備注/Memo:
楊澤棟(1996—),男,碩士研究生,研究方向為電力系統電磁兼容、電力系統電磁暫態。 朱崇銘(1983—),男,博士研究生,研究方向為電力系統電磁兼容測試技術。 鄒 軍(1971—),男,教授,研究方向為電磁場理論及應用、電力系統電磁兼容。 收稿日期:2019-03-15; 修回日期:2019-04-14 基金項目:國家自然科學基金(51577103)資助。 Project Supported by National Natural Science Foundation of China(51577103).
更新日期/Last Update: 2019-07-15
中国福利彩票快乐20分电子板