[1]費 力,張 磊,何立明,等.環境壓力對滑動弧放電等離子體助 燃激勵器特性的影響研究[J].高壓電器,2019,55(07):127-134.[doi:10.13296/j.1001-1609.hva.2019.07.019]
 FEI Li,ZHANG Lei,HE Liming,et al.Investigation on the Influence of Environmental Pressure on the Gliding Arc Discharge Plasma Actuator Combustion Characteristics[J].High Voltage Apparatus,2019,55(07):127-134.[doi:10.13296/j.1001-1609.hva.2019.07.019]
點擊復制

環境壓力對滑動弧放電等離子體助 燃激勵器特性的影響研究()
分享到:

《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期數:
2019年07期
頁碼:
127-134
欄目:
研究與分析
出版日期:
2019-07-15

文章信息/Info

Title:
Investigation on the Influence of Environmental Pressure on the Gliding Arc Discharge Plasma Actuator Combustion Characteristics
作者:
費 力1 張 磊2 何立明1 陳 一1 朱春昶1 趙兵兵1
(1. 空軍工程大學航空工程學院, 西安 710038; 2. 中國人民解放軍第95973部隊, 遼寧 阜新 123100)
Author(s):
FEI Li1 ZHANG Lei2 HE Liming1 CHEN Yi1 ZHU Chunchang1 ZHAO Bingbing1
(1. College of Aeronautics Engineering, Air Force Engineering University, Xi’an 710038, China; 2. Unit 95937 of PLA, Liaoning Fuxin, 123100, China)
關鍵詞:
三維旋轉滑動弧 電弧滑動模式 環境壓力 放電特性
Keywords:
3D rotating gliding arc discharge plasma assisted combustion actuator environmental pressure discharge characteristic
DOI:
10.13296/j.1001-1609.hva.2019.07.019
摘要:
在航空發動機上運用等離子體助燃技術能夠有效減少燃燒化學反應所需的活化能,提高燃燒效率。為了將該項技術真正應用到航空發動機燃燒室,搭建了三維旋轉滑動弧放電等離子體助燃激勵器放電特性的實驗平臺,采用實驗與理論分析相結合的方法,探索環境壓力對三維旋轉滑動弧放電等離子體助燃激勵器特性的影響。結果表明,在三維旋轉滑動弧放電過程中,電弧在擊穿伴隨滑動模式(B-GI)和穩定電弧滑動模式(A-G)之間還存在一種過渡模式(B-GII),同時具有以上兩種模式特征。環境壓力對電弧滑動模式影響顯著,當壓力小于1 bar(1 bar=0.1 MPa)時,電弧滑動模式隨氣壓升高逐漸從B-GI模式發展為A-G模式。與此同時,隨著環境壓力的增大,電弧擊穿電壓和峰—峰值電壓也隨之增大,但由于放電過程中的電弧滑動模式轉換,擊穿電壓在0.5~0.7 bar范圍附近會有小幅度的減小。
Abstract:
The application of plasma assisted combustion technology in aero engines can effectively reduce the activation energy required for chemical reactions during combustion and improve combustion efficiency. In order to truly apply this technology to the combustion chamber of aero-engine, an experimental system for the discharge characteristics of the three-dimensional rotary gliding arc discharge plasma assisted combustion exciter is established in this paper. The combination of experimental and theoretical analysis is used to explore the influence of ambient pressure on the characteristics of three-dimensional rotary sliding arc discharge plasma assisted combustion exciter. The results show that there is a transition mode (B-GII) between the Breakdown Gliding mode (B-GI) and the steady arc gliding mode (A-G), which has two characteristics. The environmental pressure has a significant influence on the arc sliding mode. When the pressure is less than 1 bar(1 bar=0.1 MPa), the arc sliding mode continuously develops from the B-GI mode to the A-G mode as the air pressure rises. At the same time, with the increase of environmental pressure, the arc breakdown voltage and the peak-to-peak voltage also increase. However, due to the arc sliding mode conversion in the discharge process, the breakdown voltage will decrease slightly in the range of 0.5~0.7 bar.

參考文獻/References:

[1] LEONOV S B, YARANTSEV D A, NAPARTOVICH A P, et al. Plasma-induced ignition and plasma-assisted combustion in high speed flow[J]. Plasma Sources Science and Technology, 2006, 16(1): 132-138.
[2] STARIKOVSKAIA S M. Plasma assisted ignition and combustion[M]. Weinheim:Wiley VCH Verlag GmbH & Co. KGaA,2010.
[3] BROWN M, FORLINES R A, GANGULY B, et al. Pulsed DC discharge dynamics and radical driven chemistry of ignition[C]//43th AIAA Aerospace Sciences Meeting & Exhibit. Reno,Nevada: AIAA, 2013:1-8.
[4] MINTUSOV E, SERDYUCHENKO A, CHOI I, et al. Mechanism of plasma assisted oxidation and ignition of ethylene-air flows by a repetitively pulsed nanosecond discharge[J]. Proceedings of the Combustion Institute, 2009, 32(2):3181-3188.
[5] CUMPSTY N A. Jet propulsion: a simple guide to the aerodynamics and thermodynamic, design and performance of jet engines[M]. New York,USA: Cambridge University Press, 1997:35-68.
[6] ROSOCHA L A, COATES D M, PLATTS D, et al. Plasma enhanced combustion of propane using a silent discharge[J]. Physics of plasmas, 2004, 11(5):2950-2956.
[7] KOSAREV I N, MINTOUSSOV E I, STARIKOVSKAYA S M, et al. Control of combustion and ignition of hydrocarbon-air mixtures by nanosecond pulsed discharges[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reno,Nevada: AIAA/CIRA, 2005:1-7.
[8] 林宇震,許全宏,劉高思.燃氣輪機燃燒室[M]. 北京: 國防工業出版社, 2008. LIN Yuzhen, XU Quanhong, LIU Gaosi. Gas turbine combustor[M]. Beijing: National Defense Industry Press,2008.
[9] BAHR D W. Technology for the design of high temperature rise combustors[J]. Journal of Propulsion and Power, 1987, 3(2):179-186.
[10] KLIMOV A, BYTURIN V, BROVKIN V, et al. Plasma assisted combustion[C]//39th Aerospace Sciences Meeting and Exhibit. Reno,Nevada:AIAA, 2001:1-9.
[11] KLIMOV A, BYTURIN V, MORALEV I, et al. Non-premixed plasma-assisted combustion in high speed airflow[C]//44th AIAA Aerospace Sciences Meeting & Exhibit. Reno,Nevada: AIAA, 2006:1-10.
[12] MEYER R, MCELDOWNEY B, CHINTALA N, et al. Experimental studies of plasma assisted ignition and MHD supersonic flow control[C]//41th AIAA Aerospace Sciences Meeting. Reno,Nevada: AIAA,2013:1-9.
[13] CHINTALA N, MEYER R, ADAMOVICH I, et al. Non-thermal ignition of premixed hydrocarbon-air and co-air flows by non-equilibrium RF plasma[C]//42th AIAA Aerospace Sciences Meeting & Exhibit. Reno,Nevada: AIAA, 2004:1-18.
[14] CHINTALA N, MEYER R, HICKS A, et al. Non-thermal ignition of premixed hydrocarbon-air flows by non-equilibrium radio frequency plasma[J]. Journal of Propulsion and Power, 2005, 21(4):583-590.
[15] MATVEEV I, MATVEEVA S, KOROLEV Y, et al. A multi-mode plasma pilots[C]//45th AIAA Aerospace Sciences Meeting & Ex-hibit. Reno,Nevada: AIAA, 2007:1-8.
[16] 胡宏斌, 徐 綱, 房愛兵, 等. 非平衡等離子體助燃低熱值氣體燃料[J]. 工程熱物理學報,2010,31(9):1603-1606. HU Hongbin, XU Gang, FANG Aibing, et al. Non-equilibriun plasma assisted combustion of low fuels[J]. Journal of Engineering Thermophysics, 2010, 31(9):1603-1606.
[17] 李 平,穆海寶,喻 琳,等.低溫等離子體輔助燃燒的研究進展、關鍵問題及展望[J]. 高電壓技術, 2015, 41(6):2073-2083. LI Ping, MU Haibao, YU Lin, et al. Progress key problems and prospect on low temperature plassma assisted combustion[J]. High Voltage Engineering, 2015, 41(6):2073-2083.
[18] 王世強,薛建議,穆海寶,等.基于特征參量優選與多算法聯合的局部放電模式識別方法[J]. 高壓電器, 2018, 54(10):112-119. WANG Shiqiang, XUE Jianyi, MU Haibao, et al. Pattern recognition of partial discharge based on the feature parameter optimization selection and multi-algorithm combined methods[J]. High Voltage Apparatus,2018,54(10):112-119.
[19] 蘭宇丹, 何立明, 郭向陽,等.不同初始溫度下等離子體對H2/Air混合物燃燒影響[J]. 推進技術, 2009, 30(6):651-655. LAN Yudan, HE Liming, GUO Xiangyang, et al. Effects of plasma on the combustion of H2 /Air mixture under different initial temperatures[J]. Journal of Propulsion and Technology,2009, 30(6):651-655.
[20] 趙兵兵, 張 鵬, 何立明,等.等離子體助燃對燃燒產物影響的實驗[J]. 航空動力學報, 2012,27(9):1974-1978. ZHAO Bingbing, ZHANG Peng, HE Liming, et al. Experiments of plasma assisted combustion’s effect on combustion products[J]. Journal of Aerospace Power, 2012, 27(9):1974-1978.
[21] 劉興建, 何立明, 白曉峰, 等. 高溫電弧等離子體點火器特性實驗研究[J]. 高電電器, 2012, 48(12):22-32. LIU Xingjian, HE Liming, BAI Xiaofeng, et al. Experimental investigation on high temperature arc plasma igniter characteristics[J]. High Voltage Apparatus,2012,48(12):22-32.
[22] 杜宏亮, 何立明, 丁 偉, 等. 等離子體助燃激勵器介質阻擋放電發射光譜分析[J]. 高電電器, 2010,48(12):14-21. DU Hongliang, HE Liming, DING Wei, et al. Emission spectrum analysis of DBD from plasma combustion-supporting actuator[J]. High Voltage Apparatus. 2012, 48(12):14-21.
[23] 何立明. 飛機推進系統原理[M]. 北京: 國防工業出版社, 2006. HE Liming. Principles of aircraft propulsion systems[M]. Beijing: National Defense Industry Press,2006.
[24] 何立明, 陳 一, 劉興建, 等. 大氣壓交流滑動弧的放電特性[J]. 高電壓技術, 2016,42(6):1921-1928. HE Liming, CHEN Yi , LIU Xingjian,et al. Characteristic of atmospheric pressure AC gliding arc discharge[J]. High Voltage Engineering, 2016,42(6):1921-1928.
[25] 何立明, 雷健平, 陳 一, 等. 大氣壓交流旋轉滑動弧的放電特性[J]. 高電壓技術, 2017,43(9):3061-3069. HE Liming, LEI Jianping, CHEN Yi ,et al. Characteristic of atmospheric pressure AC rotating gliding arc discharge[J]. High Voltage Engineering, 2017,43 (9):3061-3069.
[26] 李曉東, 張 明, 朱鳳森, 等. 滑動弧促進甲烷干重整電弧圖像及電參數分析[J]. 高電壓技術, 2015,41 (6):2022-2029. LI Xiaodong, ZHANG Ming, ZHU Fengsen,et al. Analysis of the images and electrical parameters of rotating gliding arc for the dry reforming of methane[J]. High Voltage Engineering, 2015,41(6):2022-2029.

備注/Memo

備注/Memo:
收稿日期:2019-02-15; 修回日期:2019-04-10 基金項目:國家自然科學基金(51436008,51806245)。 Project Supported by National Natural Science Foundation of China(51436008,51806245).費 力(1994—),男,碩士研究生,研究方向為等離子體輔助燃燒的相關研究。
更新日期/Last Update: 2019-07-15
中国福利彩票快乐20分电子板