[1]張施令,李京偉.基于NDIR技術的高壓組合電器中CF4氣體檢測方法研究[J].高壓電器,2019,55(07):158-164.[doi:10.13296/j.1001-1609.hva.2019.07.023]
 ZHANG Shiling,LI Jingwei.Research on CF4 Gas Detection Method in GIS Gas Chamber Based on NDIR Technology[J].High Voltage Apparatus,2019,55(07):158-164.[doi:10.13296/j.1001-1609.hva.2019.07.023]
點擊復制

基于NDIR技術的高壓組合電器中CF4氣體檢測方法研究()
分享到:

《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期數:
2019年07期
頁碼:
158-164
欄目:
研究與分析
出版日期:
2019-07-15

文章信息/Info

Title:
Research on CF4 Gas Detection Method in GIS Gas Chamber Based on NDIR Technology
作者:
張施令1 李京偉2
(1. 國網重慶市電力公司電力科學研究院, 重慶 401123; 2. 河南省日立信股份有限公司, 鄭州 450001)
Author(s):
ZHANG Shiling1 LI Jingwei2
(1. State Grid Chongqing Electric Power Company Chongqing Electric Power Research Institute, Chongqing 401123, China; 2. Henan Relations Co., Ltd., Zhengzhou 450001, China)
關鍵詞:
GIS氣室 CF4氣體非分散紅外技術 雙波長紅外差分 傳感器 溫度補償 校準實驗
Keywords:
GIS chamber CF4 gas non-spectroscopic infrared dual wavelength infrared difference sensor temperature compensation calibration experiment
DOI:
10.13296/j.1001-1609.hva.2019.07.023
摘要:
為了實現對高壓組合電器GIS氣室中CF4氣體的在線實時檢測,完善基于氣體化學成分分析實現對高壓電氣設備缺陷診斷,應用非分散紅外(NDIR)技術設計了一種光學CF4氣體傳感器。系統采用單光束雙波長結構,確定了折返光路氣室類型,提高系統靈敏度。硬件方面,采用具有多路12位精度的模數轉換器高性能單片機,進一步提高檢測精度。多組分配氣系統實驗測試結果顯示:不同體積分數的CF4氣體在RBF-PSO算法溫度補償前后傳感器測試的最大示值誤差分別為7.93%、1.20%;對不同體積分數的CF4氣體量程標定測試時的參比信號幅值與測量通道信號幅值的比值SB/SA進行指數擬合,非線性相關度R2為0.999 3;傳感器重復性平行實驗顯示RSD分別為0.87%、0.44%、0.32%。綜上,驗證了該CF4傳感器在測量范圍、抗干擾能力、檢測精度及重復性等方面的優勢。
Abstract:
In order to realize the on-line real-time detection of CF4 gas in GIS gas chamber and perfect the defect diagnosis of high-voltage electrical equipment based on gas chemical composition analysis, the optical CF4 gas sensor is designed by applying non-dispersive infrared (NDIR) technology. The system adopts a single-beam dual-wavelength structure to determine the type of return light path gas chamber and improve the sensitivity of the system. In terms of hardware, the high performance single chip microcomputer with multi-channel 12-bit ADC are adopted to further improve the detection accuracy. The test results of multi-group distribution gas system show that the maximum indication error of sensor test of CF4 gas with different volume fraction before and after temperature compensation by RBF-PSO algorithm is 7.93% and 1.20%, respectively. The ratio of SB/SA between reference signal amplitude and measurement channel signal amplitude in the calibration test of CF4 gas range with different volume fraction is fitted exponentially, and the nonlinear correlation R2 is 0.999 3. The RSD of the sensor is 0.87%, 0.44% and 0.32%, respectively. In conclusion, the advantages of CF4 sensor in measuring range, anti-interference ability, detection accuracy and repeatability are verified.

參考文獻/References:

[1] 宋 輝,代杰杰,李 喆,等. 運行條件下GIS局部放電嚴重程度評估方法[J]. 中國電機工程學報,2019,39(4):1231-1240. SONG Hui,DAI Jiejie,LI Zhe,et al. An assessment method of partial discharge severity for GIS in service[J]. Proceedings of the CSEE,2019,39(4):1231-1240.
[2] 張啟浩,吳德貫,馬正霖. ±800 kV 特高壓直流輸電工程直流穿墻套管設計缺陷及其改進方法[J]. 高壓電器,2019,55(4):239-244. ZHANG Qihao,WU Deguan,MA Zhenglin. Defect and improved method of DC wall bushing design in ±800 kV UHVDC transmission project[J]. High Voltage Apparatus,2019,55(4): 239-244.
[3] TANG J, LIU F, ZAHNG X X, et al.-Characteristics of the concentration Ratio of SO2F2 to SOF2 as the decomposition products of SF6 under corona discharge[J]. IEEE Transactions on Plasma Science, 2012, 40(1):56-62.
[4] 陳 俊,基于氣體分析的電氣設備潛伏性缺陷診斷技術研究及應用[D]. 武漢:武漢大學,2014. CHEN Jun, Research and application of latent defect diagnosis technology of electrical equipment based on gas analysis[D]. Wuhan:Wuhan University,2014.
[5] 高 乾. 基于非色散紅外吸收原理的可燃氣體濃度探測儀研制[J]. 工業儀表與自動化裝置, 2018(1):78-81. GAO Qian. A NDIR principle based combustible gas concentration detection system[J]. Industrial Instrumentation & Automation, 2018(1):78-81.
[6] 沈 婉,常建華,趙勇毅, 等. 便攜式非分光紅外SF6氣體檢測方法研究[J]. 應用光學, 2018, 39(4): 545- 550. SHEN Wan, CHANG Jianhua, ZHAO Yongyi, et al. Research on method of portable NDIR SF6 gas detection[J]. Journal of Applied Optics, 2018,39(4):545-550.
[7] 喬學光, 王 佳, 賈振安, 等.光纖CH4氣體傳感器的實驗研究[J]. 光電子激光, 2009, 20(7):851-854. QIAO Xueguang, WANG Jia, JIA Zhen’an, et al. Experiment research for optical fiber methane gas sensor[J]. Journal of Optoelectronics Laser, 2009, 20(7):851-854.
[8] 劉國華, 張玉鈞, 張 愷, 等.機動車尾氣CO檢測中神經網絡多環境因子在線修正算法研究[J]. 紅外與毫米波學報, 2018,37(6):704-710. LIU Guohua, ZHANG Yujun, ZHANG Kai, et al. Research on online correction algorithm with neural networkmulti-environment factors for CO detection of motor vehicle exhaust[J]. Infrared Millimeter Waves,2018,37(6):704-710.
[9] 陳 晨,張玉鈞,何 瑩, 等. 機動車尾氣NDIR 傳感器性能仿真分析[J]. 紅外技術, 2017, 39(6):567-573. CHEN Chen, ZHANG Yujun, HE Ying, et al. Performance simulation analysis of NDIR sensor for vehicle exhaust[J]. Infrared Technology,2017,39(6):567-573.
[10] 陳 淼,黃政偉,王 一. 基于NDIR 原理單光源單光路實現多組分測量的技術開發[J]. 分析儀器, 2017(3):20-25. CHEN Miao, HUANG Zhengwei, WANG Yi. Development of multicomponent measurement by single light source and optical path based on a infrared gas analyzer of NDIR principle[J]. Analyze instrument, 2017(3):20-25.
[11] 涂志華, 趙 陽, 鄭力文, 等. 基于非分散紅外(NDIR)技術的土壤剖面二氧化碳濃度的測定[J]. 光譜學與光譜分析, 2015,35(4):997-1000. TU Zhihua, ZHAO Yang, ZHENG Liwen, et al. Detection of carbon dioxide concentration in soil profile based on nondispersive infrared spectroscopy technique[J]. Spectroscopy and Spectral Analysis, 2015,35(4):997-1000.
[12] 黃 見,胡順星,曹開法,等. 可用于探測大氣 CO2 垂直廓線的無線傳感系統[J]. 紅外與激光工程, 2016,45(4):1-6. HUANG Jian, HU Shunxing, CAO Kaifa, et al. Remote sensing system for vertical profiles of atmospheric CO2[J], Infrared and Laser Engineering, 2016, 45(4), 1-6.
[13] 淡淑恒,吳 娜,李昊東,等. 基于有限元和神經網絡方法對220 kV盆式絕緣子均壓環結構優化設計[J]. 高壓電器,2018,54(3):79-85. DAN Shuheng, WU Na, LI Haodong,et al. Optimization design of grading ring for 220 kV basin-type insulator based on finite element method and neural network method[J]. High Voltage Apparatus, 2018,54(3):79-85.
[14] 王曉琪,吳春風. 1 000 kV GIS用套管的設計[J]. 高電壓技術,2008,34(9):1792-1796. WANG Xiaoqi, WU Chunfeng. Design of 1 000 kV GIS bushing[J]. High Voltage Engineering, 2008, 34(9): 1792-1796.
[15] 李洪濤,楊景剛,馬 勇,等. SF6氣體中金屬尖端缺陷局部放電發展過程研究[J]. 高壓電器,2019,55(1):21-26. LI Hongtao, YANG Jinggang, MA Yong, et al. Study on the PD development process of metallic protrusion in SF6 gas[J]. High Voltage Apparatus, 2019,55(1):21-26.
[16] 李德軍,沈 威,KUSCHEL M,等. 一種采用潔凈空氣絕緣和真空滅弧技術的環境友好型GIS的研究和應用[J]. 高壓電器,2019,55(2):21-30. LI Dejun, SHEN Wei, KUSCHEL M, et al. Development and application of environment-friendly GIS combined clean air and vacuum interruption technology[J]. High Voltage Apparatus,2019,55(2):21-30.
[17] 周 波,胡與非,楊新春,等. 特高頻及超聲波法在GIS設備帶電檢測中的應用[J]. 高壓電器,2019,55(1):54-58. ZHOU Bo, HU Yufei, YANG Xinchun, et al. Application of ultrahigh frequency and ultrasonic method in the live detection of GIS equipment[J]. High Voltage Apparatus, 2019,55(1):54-58.
[18] 唐 喜,葉志祥,任雁銘,等. 一種新型的高壓開關綜合在線監測IED設計與研制[J]. 高壓電器,2019,55(2):97-103. TANG Xi, YE Zhixiang, REN Yanming, et al. Design and development of a novel integrated on-line monitoring IED for high voltage switchgear[J]. High Voltage Apparatus, 2019,55(2):97-103.
[19] 黨沙沙,許 洋,張紅松. Ansys12.0多物理耦合場有限元分析入門到精通[M]. 北京:機械出版社,2010:254-311. DANG Shasha, XU Yang, ZHANG Hongsong. Ansys12.0 finite element analysis of multiphysics coupling field from start to master[M]. Beijing: China Mechanical Press, 2010:254-311.
[20] 郭皓然,邵 偉,周阿維,等. 全局閾值自適應的高亮金屬表面缺陷識別新方法[J]. 儀器儀表學報,2017,38(11):2797-2804. GUO Haoran, SHAO Wei, ZHOU Awei, et al. Novel defect recognition method based on adaptive global threshold for highlight metal surface[J]. Chinese Journal of Scientific Instrument, 2017,38(11):2797-2804.

備注/Memo

備注/Memo:
張施令(1986—),男,博士,高級工程師,從事超/特高壓絕緣結構的優化設計、六氟化硫氣體絕緣電力設備狀態監測與壽命評估。收稿日期:2019-03-05; 修回日期:2019-04-20 基金項目:重慶市基礎科學與前沿技術研究(cstc2018jcyjAX0486);重慶市電力公司科技項目(2018渝電科技4#)。 Project Supporte by Chongqing Research Program of Fundamental Science and Advanced Technology(cstc2018jcyjAX0486),Science and Technology Project of Chongqing Electric Power Company(2018 Yudian Technology 4#).
更新日期/Last Update: 2019-07-15
中国福利彩票快乐20分电子板