[1]周小猛,林志力,苗本健,等.大容量試驗短路電流波形參數的測算[J].高壓電器,2019,55(07):227-234.[doi:10.13296/j.1001-1609.hva.2019.07.033]
 ZHOU Xiaomeng,LIN Zhili,MIAO Benjian,et al.Measurement and Calculation of Short-circuit Current Waveform Parameters for High Power Tests[J].High Voltage Apparatus,2019,55(07):227-234.[doi:10.13296/j.1001-1609.hva.2019.07.033]
點擊復制

大容量試驗短路電流波形參數的測算()
分享到:

《高壓電器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期數:
2019年07期
頁碼:
227-234
欄目:
技術討論
出版日期:
2019-07-15

文章信息/Info

Title:
Measurement and Calculation of Short-circuit Current Waveform Parameters for High Power Tests
作者:
周小猛1 林志力2 苗本健2 李賽賽1 袁小嫻1
(1. 國家智能電網輸配電設備質量監督檢驗中心, 廣東 東莞 523325; 2. 廣東產品質量監督檢驗研究院, 廣州 510670)
Author(s):
ZHOU Xiaomeng1 LIN Zhili2 MIAO Benjian2 LI Saisai1 YUAN Xiaoxian1
(1. China National Quality Supervision and Testing Center for Smart Grid Transmission and Distribution Equipment, Guangdong Dongguan 523325, China; 2. Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330, China)
關鍵詞:
大容量試驗 短路電流 參數測算 直流時間常數 交流分量有效值 不確定度
Keywords:
high power tests short-circuit current parameter calculation DC time constant RMS value of AC component uncertainty
DOI:
10.13296/j.1001-1609.hva.2019.07.033
摘要:
采用拋物線擬合方法計算大容量試驗短路電流波形的峰值和對應的時間坐標。理論證明短路電流波形上相鄰兩峰值的時間坐標中點的電流值近似等于此時的直流分量值,并據此給出波形的直流時間常數、交流(基波)分量有效值和直流分量百分數的算法。使用STL提供的標準短路電流波形,對文中算法和現有算法進行了對比測試。測試結果驗證了該算法的準確性,同時表明,僅使用3個峰值點并未顯著降低文中算法在計算交流分量恒定的短路電流波形參數時的準確度。通過計算直流時間常數不同、頻率和交流分量有效值隨時間變化等STL標準波形在每一個峰值點處的參數,得到該算法在計算峰值、直流時間常數、交流分量有效值、直流分量百分數時的相對擴展不確定度分別為0.03%、0.20%、0.40%、0.80%。
Abstract:
The parabolic curve fitting method is used to calculate the peak value and the corresponding time coordinate of short-circuit current waveform in high power tests. It is proved theoretically that the current value at the midpoint of the two adjacent peaks in the short-circuit current waveform is approximately equal to the DC component at this time. A algorithm to calculate the DC time constant, the RMS value of AC (fundamental) component and the percentage value of DC component is given accordingly. Using the standard short-circuit current waveform provided by STL, the algorithms of this paper and the existing ones are compared and tested. Test results verify the accuracy of the algorithms in this paper, and show that using only three peak points does not significantly reduce the accuracy of these algorithms when calculating short-circuit current waveform parameters with constant AC components. The relative expanded uncertainties of these algorithms in calculating the crest value, the DC time constant, the RMS value of AC component and the percentage value of DC component are 0.03%, 0.22%, 0.39%, and 0.76% respectively, which were obtained by calculating the parameters of the STL standard waveforms at each peak point, whose DC time constants different, frequency and the RMS value of AC component change over time.

參考文獻/References:

[1] High-voltage switchgear and controlgear - Part 100: Alternating-current circuit-breakers:IEC 62271-100:2002[S]. 2012.
[2] 高電壓試驗技術第1部分:一般定義及試驗要求:GB/T 16927.1—2011[S]. 2011. High voltage test techniques-Part 1:General definitions and test requirements:GB/T 16927.1—2011[S]. 2011.
[3] 高電壓和大電流試驗技術第4部分:試驗電流和測量系統的定義和要求:GB/T 16927.4—2014[S]. 2014. High voltage and high current test techniques-Part 4:Definitions and requirements for test currents and measuring systems: GB/T 16927.4—2014[S]. 2014.
[4] 舒勝文, 阮江軍, 黃道春, 等. 系統故障參數對真空斷路器開斷性能影響的建模與仿真研究[J]. 電力自動化設備, 2013, 33(11): 81-87. SHU Shengwen,RUAN Jiangjun,HUANG Daochun, et al. Influence of system fault parameters on breaking performance of vacuum circuit breaker:modeling and simulation[J]. Electric Power Automation Equipment,2013,33(11):81-87.
[5] 羅深增, 李銀紅, 游 昊, 等. 基于同步相量測量單元的串聯補償線路自適應故障定位算法[J]. 電工技術學報, 2017, 32(5): 143-151. LUO Shenzeng, LI Yinhong, YOU Hao, et al. An adaptive fault location algorithm based on PMU measurement for series compensated transmission lines[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 143-151.
[6] 蔡 超, 陸于平. 一種提高智能變電站PMU相量測量精度的改進采樣值調整算法[J]. 電力自動化設備, 2014, 34(3): 149-154. CAI Chao, LU Yuping. Improved sampled value adjustment algorithm increasing measurement precision of smart substation PMU[J]. Electric Power Automation Equipment, 2014, 34(3): 149-154.
[7] 金 濤, 陳毅陽, 段小華, 等. 基于改進DFT的電力系統同步相量測量算法研究[J]. 電工技術學報, 2017, 32(17): 1-10. JIN Tao, CHEN Yiyang, Duan Xiaohua, et al. Research on synchronous phasor measurement algorithm of power system based on improved DFT[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 1-10.
[8] Short-circuit Testing Liaison. Harmonisation of data processing methods for high power laboratories[R]. Coventry, England: Short-circuit Testing Liaison, 2004.
[9] 王 晶,牟 磊,李彥明,等.大容量實驗室電流波形參數計算機提取算法的研究[J].高壓電器,2006,42(1):44-46. WANG Jing, MOU Lei, LI Yanming, et al. Computation methods of current waveform parameters in high power laboratory[J]. High Voltage Apparatus, 2006, 42(1): 44-46.
[10] 曹 煒, 王永生, 丁北平, 等.基于包絡線和函數擬合的錄波數據分析[J]. 上海電力學院學報, 2010, 26(4): 315-318. CAO Wei, WANG Yongsheng, DING Beiping, et al. Analytical study of fault recording data based on envelopes and function fitting[J]. Journal of Shanghai University of Electric Power, 2010, 26(4): 315-318.
[11] 呂思穎, 裴 旵, 秦 昕, 等. 基于小波多尺度分析和Kalman濾波的微機保護算法[J]. 電力系統保護與控制, 2015, 43(21): 54-59. LYU Siying, PEI Chan, QIN Xin, et al. Microprocessor- based protection algorithm based on wavelet multi-scale analysis and Kalman filter[J]. Power System Protection and Control, 2015, 43(21): 54-59.
[12] 任龍飛, 郝治國, 張保會, 等. 繼電保護抗TA暫態飽和改進Prony算法[J]. 電力自動化設備,2014,34(5):126-132. REN Longfei,HAO Zhiguo,ZHANG Baohui, et al. Improved Prony algorithm against transient CT saturation for relay protection[J]. Electric Power Automation Equipment, 2014, 34(5): 126-132.
[13] 王家林, 夏 立, 吳正國, 等. 采用改進Prony算法的電力系統故障暫態信號分析[J]. 電力自動化設備, 2012, 32(7): 89-93. WANG Jialin,XIA Li,WU Zhengguo, et al. Analysis of power system transient signal based on improved Prony algorithm[J]. Electric Power Automation Equipment,2012, 32(7): 89-93.
[14] 符 玲, 韓文朕, 麥瑞坤, 等. 利用頻域信息濾除衰減直流的同步相量測量算法[J]. 中國電機工程學報, 2016, 36(18): 4923-4929. FU Ling, HAN Wenzhen, MAI Ruikun, et al. Phasor estimator based on frequency-domain information considering decaying DC components[J]. Proceedings of the CSEE, 2016, 36(18): 4923-4929.
[15] 吳繼維, 童曉陽, 廖小君, 等. 一種濾除衰減直流分量的全波傅氏改進算法研究[J]. 電力系統保護與控制, 2016, 44(2): 9-17. WU Jiwei, DONG Xiaoyang, LIAO Xiaojun, et al. A full-wave Fourier improved algorithm of filtering decaying DC component[J]. Power System Protection and Control, 2016, 44(2): 9-17.
[16] 厲 偉, 陳 剛. 一種利用LabVIEW濾除衰減直流分量的改進算法[J]. 電力系統保護與控制,2014,42(11):7-12. LI Wei, CHEN Gang. An improved algorithm to filter delaying DC component based on LabVIEW[J]. Power System Protection and Control, 2014, 42(11): 7-12.
[17] CHO Y S, LEE C K, JANG G, et al. An innovative decaying DC component estimation algorithm for digital relaying[J]. IEEE Transactions on Power Delivery, 2009, 24(1): 73-78.
[18] ALAM A S. A new fast algorithm to estimate real-time phasors using adaptive signal processing[J]. IEEE Transactions on Power Delivery, 2013, 28(2): 807-815.
[19] HOOSHYAR A, SANAYE-PASAND M. Accurate measurement of fault currents contaminated with decaying DC offset and CT saturation[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 773- 783.
[20] 黃世年, 佟為明, 郭志忠, 等. 直接提取基頻分量瞬時值的快速濾波算法[J]. 電力系統保護與控制, 2013, 41(3): 44-49. HUANG Shinian, TONG Weiming, GUO Zhizhong, et al. A fast filtering algorithm for extracting fundamental instantaneous value[J]. Power System Protection and Control, 2013, 41(3): 44-49.
[21] 呂思穎, 黎 丹, 要 航, 等. 基于無跡Kalman濾波的基波分量提取[J]. 電力系統保護與控制, 2016, 44(13): 79-84. LYU Siying, LI Dan, YAO Hang, et al. Fundamental component extraction based on unscented Kalman filter[J]. Power System Protection and Control, 2016, 44(13): 79-84.
[22] 邱關源. 電路[M]. 第5版. 北京:高等教育出版社, 2006. QIU Guanyuan. Circuit[M]. 5th Edition. Beijing: Higher Education Press, 2006.

備注/Memo

備注/Memo:
周小猛(1987—),男,碩士,工程師,從事高壓大容量試驗檢測和回路設計工作。 林志力(1964—),男,碩士,教授級高工,主要從事電氣檢測研究工作。收稿日期:2018-12-05; 修回日期:2019-02-20 基金項目:國家質檢總局科技計劃項目(2015QK003)。 Project Supported by Science and Technology Plan Project of AQSIQ(2015QK003).
更新日期/Last Update: 2019-07-15
中国福利彩票快乐20分电子板